Tuesday, September 04, 2018
Ex 4.1.1 Algebra by M.Artin
Let T be left multiplication by the matrix
⎡1 2 0 -1 5⎤ ⎢ ⎥ ⎢2 0 2 0 1⎥ ⎢ ⎥. ⎢1 1 -1 3 2⎥ ⎢ ⎥ ⎣0 3 -3 2 6⎦Compute ker T and im T explicitly by exhibiting bases for these spaces.
Answer
2 dimensional basis of ker T in \(F^5\), such as:⎡-7⎤ ⎡0 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢5 ⎥ ⎢-5⎥ ⎢ ⎥ ⎢ ⎥ ⎢7 ⎥ , ⎢-1⎥ ⎢ ⎥ ⎢ ⎥ ⎢3 ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0 ⎦ ⎣2 ⎦3 dimensional basis of im T in \(F^4\), such as:
⎡1⎤ ⎡0⎤ ⎡0⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢0⎥ ⎢1⎥ ⎢0⎥ ⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥ ⎢0⎥ ⎢0⎥ ⎢1⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0⎦ ⎣0⎦ ⎣0⎦Note T:V \(\rightarrow\) W, where dim(V) = 5 and dim(W) = 4 in this case; and
dim(ker T) + dim(im T) = dim(V)in general per the Dimensional Formula (Ch 4.1).
Enable Symbolic in Octave 4.0.3
Command line: $ python --version Python 3.7.0 $ python -m pip install --user sympy Octave: >> pkg load symbolic >> A=[1 2 0 -1 5; 2 0 2 0 1; 1 1 -1 3 2; 0 3 -3 2 6] A = 1 2 0 -1 5 2 0 2 0 1 1 1 -1 3 2 0 3 -3 2 6 >> A=sym(A) A = (sym 4×5 matrix) ⎡1 2 0 -1 5⎤ ⎢ ⎥ ⎢2 0 2 0 1⎥ ⎢ ⎥ ⎢1 1 -1 3 2⎥ ⎢ ⎥ ⎣0 3 -3 2 6⎦ >> rref(A) ans = (sym 4×5 matrix) ⎡1 0 0 7/3 0 ⎤ ⎢ ⎥ ⎢0 1 0 -5/3 5/2⎥ ⎢ ⎥ ⎢0 0 1 -7/3 1/2⎥ ⎢ ⎥ ⎣0 0 0 0 0 ⎦