Monday, March 21, 2005
Power Set
Given a set S, how do you find the non-empty power set of S ? By non-empty, I mean all the subsets except the null set. I find this useful when I was building a keyboard manager that needed to figure out all the unique key combinations, each can be mapped to a different function. For example, pressing c has a different meaning than ctrl-c, alt-c, alt-ctrl-c, etc. Here are two implementations in OO javascript.
To run the demo script, simply invoke demo('calcPn') which takes O(2^n) time, or demo('calcPnByTim') which takes O(n*2^n) time.
Update on 24Feb07: An elegant recursive Java solution originated from Justin Sadowski:
To run the demo script, simply invoke demo('calcPn') which takes O(2^n) time, or demo('calcPnByTim') which takes O(n*2^n) time.
Update on 2Apr06: See Comprehending the Problem by Paul Brown.<script>
/**
* Non-emtpy Power Set Calculation.
*
* @author Hanson Char
* @author Tim Lavers
*/
/**
* PSet Class Definition.
*/
function PSet() {}
/**
* Factory method to return a singleton instance of PSet.
*/
PSet.getInstance = function() {
return PSet['inst'] == null
? PSet.inst = new PSet()
: PSet.inst
}
/**
* Calculate Pn, given Sn.
*
* Pn is an array representing the non-empty power set of the elements
* of an input array Sn, where n can be an arbitrary positive integer
* representing the input array length.
* The resultant elements of Pn can be in any order.
*
* Examples:
*
* S1 = [E1]
* S2 = [E1, E2]
* S3 = [E1, E2, E3]
* ...
* Sn = [E1, E2, ..., En]
*
* P1 = [E1]
* P2 = [E1, E2, E1E2]
* P3 = [E1, E2, E3, E1E2, E1E3, E2E3, E1E2E3]
* ...
* Pn = [E1, E2, ..., En, E1E2, E1E3, ..., E1En, ... E1E2E3...En]
*
* Formula:
*
* Pn = Pn-1 x En + En + Pn-1
*
* Note this specific routine maintains the internal order
* of the components of each composite element in Pn as the same as
* the order of the elements of Sn.
* For example, if S2 is [E1, E2],
* then one valid composite element in P2 is E1E2, but not E2E1.
*
* Takes O(2^n).
*/
PSet.prototype.calcPn = function(sa) {
var pa = []
for (var i=sa.length-1; i > -1; i--) {
var e = sa[i]
e = typeof e == "string" ? e : (e+"")
for (var j=pa.length-1; j > -1; j--)
pa[pa.length] = e + pa[j]
pa[pa.length] = e
}
return pa
}
/**
* Thanks to Tim Lavers. Here is an alternative solution.
* Tim pointed out that Pn is equivalent to the 2^(n-1) - 1 non-empty subsets of Sn.
* So for each number 1 to 2^(n-1), use the base2 representation of that number
* as a bit vector that determines which elements are included.
*
* Takes O(n*2^n).
*/
PSet.prototype.calcPnByTim = function(sa) {
var max = Math.pow(2, sa.length)
var ta = []
for (var i=1; i < max; i++) {
var e = ""
var j=0
for (var k=i; k > 0; k = k >>> 1) {
if (k & 1)
e += sa[j]
j++
}
ta[ta.length] = e
}
return ta
}
/**
* Demo function.
*/
function demo(methodName) {
var inst = PSet.getInstance()
var a = []
var i=0
for (; i < 9; i++) {
a[a.length] = String.fromCharCode(65+i)
var func = eval("inst."+methodName)
var ta = func(a)
var ip1 = i+1
if (!confirm("S"+ip1+":["+a+"]\nT"+ip1+":["+ta+"]"))
break
}
if (i == 9)
alert("That's it.\nAnything more than 9 elements may take too long to run.")
}
</script>
Update on 24Feb07: An elegant recursive Java solution originated from Justin Sadowski:
public class PowerSet {
void run(String[] sa) {
f(sa, 0, "");
}
void f(String[] a, int idx, String s) {
if (idx >= a.length)
return;
System.out.println(s+a[idx]);
f(a, idx+1, s);
f(a, idx+1, s+a[idx]);
}
public static void main(String[] args) {
String[] sa = {"a", "b", "c"};
new PowerSet().run(sa);
}
}